oriels/app/PullRequest.cs
2022-10-25 03:31:27 -04:00

442 lines
10 KiB
C#

namespace Oriels;
public static class PullRequest {
public static void BoundsDraw(Bounds b, float thickness, Color color) {
Vec3 c = Vec3.One / 2;
Vec3 ds = b.dimensions;
for (int i = 0; i < 4; i++) {
Quat q = Quat.FromAngles(i * 90, 0, 0);
Lines.Add(q * (new Vec3(0, 0, 0) - c) * ds, q * (new Vec3(0, 1, 0) - c) * ds, color, color, thickness);
Lines.Add(q * (new Vec3(0, 1, 0) - c) * ds, q * (new Vec3(1, 1, 0) - c) * ds, color, color, thickness);
Lines.Add(q * (new Vec3(1, 1, 0) - c) * ds, q * (new Vec3(1, 0, 0) - c) * ds, color, color, thickness);
// convert to linepoints
}
}
public static Vec3 Slerp(Vec3 a, Vec3 b, float t) {
float dot = Vec3.Dot(a, b);
dot = Clamp(dot, -1f, 1f);
float theta = MathF.Acos(dot) * t;
Vec3 relativeVec = b - a * dot;
relativeVec.Normalize();
return (a * MathF.Cos(theta)) + (relativeVec * MathF.Sin(theta));
}
// amplify quaternions (q * q * lerp(q.i, q, %))
public static Vec3 AngularDisplacement(Quat q) {
float angle; Vec3 axis;
ToAxisAngle(q, out axis, out angle);
return axis * angle;
// * (float)(Math.PI / 180); // radians -> degrees
// / Time.Elapsedf; // delta -> velocity
}
public static void ToAxisAngle(this Quat q, out Vec3 axis, out float angle) {
q = q.Normalized; // q.Normalize(); ?
angle = 2 * MathF.Acos(q.w);
float s = MathF.Sqrt(1 - q.w * q.w);
// float s = 2 * MathF.Asin(angle * 0.5f);
axis = Vec3.Right;
// avoid divide by zero
// + if s is close to zero then direction of axis not important
if (s > 0.001) {
axis.x = q.x / s;
axis.y = q.y / s;
axis.z = q.z / s;
}
}
// construct the quaternion that rotates one vector to another
// uses the usual trick to get the half angle
public static Quat Delta(Vec3 to, Vec3 from) {
Vec3 vec = Vec3.Cross(from, to);
return new Quat(
vec.x,
vec.y,
vec.z,
1 + Vec3.Dot(to, from )
).Normalized;
}
// Quat q;
// public static void Relative(Quat to) => q = to * q * to.Inverse;
public static Quat Relative(Quat to, Quat delta) {
return (to * delta * to.Inverse).Normalized;
}
// ?
public static Vec3 Relative(Quat to, Vec3 delta) {
return to * delta * to.Inverse;
}
// public static void LookDirection(this ref Quat q, Vec3 dir) {
// Vec3 up = Vec3.Up;
// // using AxisAngle
// Vec3 axis = Vec3.Cross(up, dir);
// float angle = MathF.Atan2(Vec3.Dot(up, dir), axis.Length);
// q = FromAxisAngle(axis.Normalized, angle);
// }
public static Quat FromAxisAngle(Vec3 axis, float angle) {
float halfAngle = angle * 0.5f;
float sin = (float)Math.Sin(halfAngle);
float cos = (float)Math.Cos(halfAngle);
return new Quat(axis.x * sin, axis.y * sin, axis.z * sin, cos).Normalized;
}
static Random r = new Random();
public static int RandomRange(int min, int max) {
return r.Next(min, max);
}
public static Vec3 Direction(Vec3 to, Vec3 from) {
return (to - from).Normalized;
}
public static Vec3 SnapToLine(this Vec3 v, Vec3 a, Vec3 b, bool clamp, out float t, float tMin = 0, float tMax = 1) {
Quat q = Quat.LookDir(Direction(b, a));
Vec3 lv = q.Inverse * (v - a);
lv.x = lv.y = 0;
Vec3 r = q * lv + a;
float d = (b - a).Length;
t = (r - a).Length / d;
if (clamp) {
t = t < tMin ? tMin : (t > tMax ? tMax : t);
r = a + (b - a) * t;
}
return r;
}
/*
// turn this into a function
Vec3 vA = new Vec3(-1, 0, 0);
Vec3 vB = new Vec3(1, 1, 1);
Vec3 vC = Input.Hand(Handed.Right).palm.position;
Quat q = Quat.LookDir((vB - vA).Normalized);
// snap vC to line vA-vB
Vec3 local = q.Inverse * (vC - vA);
local.x = 0;
local.y = 0;
vC = q * local + vA;
Lines.Add(vA, vB, new Color(1, 1, 1), 0.002f);
Mesh.Cube.Draw(matDev, Matrix.TRS(vC, q, 0.04f));
*/
// swizzle
public static Vec3 JustX(this Vec3 v) {
return new Vec3(v.x, 0, 0);
}
public static Vec3 JustY(this Vec3 v) {
return new Vec3(0, v.y, 0);
}
public static Vec3 JustZ(this Vec3 v) {
return new Vec3(0, 0, v.z);
}
// public static Vec3 Down {
// get { return new Vec3(0, -1, 0); }
// }
public static Vec3 Abs(this Vec3 v) {
return new Vec3(
MathF.Abs(v.x),
MathF.Abs(v.y),
MathF.Abs(v.z)
);
}
public static Vec3 Sign(this Vec3 v) {
return new Vec3(
MathF.Sign(v.x),
MathF.Sign(v.y),
MathF.Sign(v.z)
);
}
/// <summary>
/// a(1,1,1) b(2,2,2) t(0,1,0.5) return(1,2,1.5)
/// </summary>
public static Vec3 Splice(this Vec3 a, Vec3 b, Vec3 t, bool nor = false) {
return new Vec3(
Lerp(a.x, b.x, nor ? MathF.Sign(t.x) : t.x),
Lerp(a.y, b.y, nor ? MathF.Sign(t.y) : t.y),
Lerp(a.z, b.z, nor ? MathF.Sign(t.z) : t.z)
);
}
static Mesh meshCube = Default.MeshCube;
static Material matCube = Default.Material;
public static void BlockOut(Matrix m, Color color, Material mat = null) {
if (mat == null) {
mat = matCube;
mat.FaceCull = Cull.None;
}
meshCube.Draw(mat, m, color);
}
public static Mesh GetMesh(this Model model, string name) {
for (int i = 0; i < model.Nodes.Count; i++) {
if (model.Nodes[i].Name == name) {
return model.Nodes[i].Mesh;
}
}
Console.WriteLine("Mesh not found: " + name);
return Mesh.Quad;
}
public static void SetMat(this Material mat, int offset, Cull cull, bool depthWrite) {
mat.QueueOffset = offset;
mat.FaceCull = cull;
mat.DepthWrite = depthWrite;
}
public static Vec3 RandomInCube(Vec3 center, float size) {
Random r = new Random();
return center + new Vec3(
(r.NextSingle() - 0.5f) * size,
(r.NextSingle() - 0.5f) * size,
(r.NextSingle() - 0.5f) * size
);
}
public static float Lerp(float a, float b, float t) {
return a + (b - a) * t;
}
// public static Vec3 Slerp(Vec3 a, Vec3 b, float t) {
// // spherical linear interpolation
// float dot = Vec3.Dot(a, b);
// if (dot > 0.9995f) {
// return Vec3.Lerp(a, b, t);
// }
// float theta = (float)Math.Acos(dot);
// float sinTheta = (float)Math.Sin(theta);
// return Vec3.Lerp(a * (float)Math.Sin(theta - theta * t) / sinTheta, b * (float)Math.Sin(theta * t) / sinTheta, t);
// }
public class Noise {
const uint CAP = 4294967295;
const uint BIT_NOISE1 = 0xB5297A4D;
const uint BIT_NOISE2 = 0x68E31DA4;
const uint BIT_NOISE3 = 0x1B56C4E9;
public uint seed;
public Noise(uint seed) {
this.seed = seed;
}
int position;
public float uvalue {
get {
float v = RNG(position, seed) / (float)CAP;
position++;
return v;
}
}
public float value { // not ideal *loss of precision*
get {
return uvalue * 2 - 1;
}
}
public float D1(int pos) {
return RNG(pos, seed) / (float)CAP;
}
public float D2(int x, int y) {
// large prime number with non-boring bits
const int PRIME = 198491317;
return RNG(x + (PRIME * y), seed) / (float)CAP;
}
public float D3(int x, int y, int z) {
// large prime number with non-boring bits
const int PRIME1 = 198491317;
const int PRIME2 = 6542989;
return RNG(x + (PRIME1 * y) + (PRIME2 * z), seed) / (float)CAP;
}
public uint RNG(int pos, uint seed) {
uint mangled = (uint)pos;
mangled *= BIT_NOISE1;
mangled += seed;
mangled ^= mangled >> 8;
mangled += BIT_NOISE2;
mangled ^= mangled << 8;
mangled *= BIT_NOISE3;
mangled ^= mangled >> 8;
return mangled;
}
}
public static float Clamp01(float v) {
return MathF.Max(0, MathF.Min(1, v));
}
public static float Clamp(float v, float min, float max) {
return MathF.Max(min, MathF.Min(max, v));
}
public static float ToFloat(
ref string s,
float min = float.NegativeInfinity,
float max = float.PositiveInfinity
) {
try {
float value = Clamp(float.Parse(s), min, max);
// if clamped, update string
if (value != float.Parse(s)) {
s = value.ToString();
}
return value;
} catch {
return 0;
}
}
public class PID {
public float p, i;
public float value;
float integral;
// float scalar = 1f;
public PID(float p = 1, float i = 0.1f) {
this.p = p;
this.i = i;
}
public float Update(float target) {
float error = value - target;
integral += error;
float delta = ((p * error) + (i * integral));
return value -= delta * Time.Elapsedf;
}
}
public class Vec3PID {
public Vec3 value, integral;
// float scalar = 1f;
public Vec3 Update(Vec3 target, float p = 1, float i = 0.1f) {
Vec3 error = value - target;
integral += error;
Vec3 delta = ((p * error) + (i * integral));
return value -= delta * Time.Elapsedf;
}
}
public class Lerper {
public float t = 0;
public float spring = 1;
public float dampen = 1;
float vel;
public void Step(float to = 1, bool bounce = false) {
float dir = to - t;
vel += dir * spring * Time.Elapsedf;
if (Math.Sign(vel) != Math.Sign(dir)) {
vel *= 1 - (dampen * Time.Elapsedf);
} else {
vel *= 1 - (dampen * 0.33f * Time.Elapsedf);
}
float newt = t + vel * Time.Elapsedf;
if (bounce && (newt < 0 || newt > 1)) {
vel *= -0.5f;
newt = Math.Clamp(newt, 0, 1);
}
t = newt;
}
public void Reset() {
t = vel = 0;
}
}
public class OneEuroFilter {
public OneEuroFilter(double minCutoff, double beta) {
firstTime = true;
this.minCutoff = minCutoff;
this.beta = beta;
xFilt = new LowpassFilter();
dxFilt = new LowpassFilter();
dcutoff = 1;
}
protected bool firstTime;
protected double minCutoff;
protected double beta;
protected LowpassFilter xFilt;
protected LowpassFilter dxFilt;
protected double dcutoff;
public double MinCutoff {
get { return minCutoff; }
set { minCutoff = value; }
}
public double Beta {
get { return beta; }
set { beta = value; }
}
public double Filter(double x, double rate) {
double dx = firstTime ? 0 : (x - xFilt.Last()) * rate;
if (firstTime) {
firstTime = false;
}
var edx = dxFilt.Filter(dx, Alpha(rate, dcutoff));
var cutoff = minCutoff + beta * Math.Abs(edx);
return xFilt.Filter(x, Alpha(rate, cutoff));
}
protected double Alpha(double rate, double cutoff) {
var tau = 1.0 / (2 * Math.PI * cutoff);
var te = 1.0 / rate;
return 1.0 / (1.0 + tau / te);
}
}
public class LowpassFilter {
public LowpassFilter() {
firstTime = true;
}
protected bool firstTime;
protected double hatXPrev;
public double Last() {
return hatXPrev;
}
public double Filter(double x, double alpha) {
double hatX = 0;
if (firstTime) {
firstTime = false;
hatX = x;
} else
hatX = alpha * x + (1 - alpha) * hatXPrev;
hatXPrev = hatX;
return hatX;
}
}
}