198 lines
No EOL
4.9 KiB
HLSL
198 lines
No EOL
4.9 KiB
HLSL
#include "stereokit.hlsli"
|
|
|
|
//--name = dofdev/oriel
|
|
// float4 color;
|
|
float _height;
|
|
float _ypos;
|
|
float3 _dimensions;
|
|
float3 _center;
|
|
Texture2D tex; // : register(t0);
|
|
SamplerState tex_s; // : register(s0);
|
|
|
|
cbuffer BufferData : register(b3) {
|
|
float3 windDirection;
|
|
float windStrength;
|
|
};
|
|
|
|
struct vsIn {
|
|
float4 pos : SV_POSITION;
|
|
float3 norm : NORMAL0;
|
|
float2 uv : TEXCOORD0;
|
|
float4 col : COLOR0;
|
|
};
|
|
struct psIn {
|
|
float4 pos : SV_POSITION;
|
|
float3 campos : NORMAL0;
|
|
float3 world : NORMAL1;
|
|
float3 norm : NORMAL2;
|
|
float2 uv : TEXCOORD0;
|
|
float4 color : COLOR0;
|
|
uint view_id : SV_RenderTargetArrayIndex;
|
|
};
|
|
|
|
psIn vs(vsIn input, uint id : SV_InstanceID) {
|
|
psIn o;
|
|
o.view_id = id % sk_view_count;
|
|
id = id / sk_view_count;
|
|
|
|
o.campos = sk_camera_pos[o.view_id].xyz;
|
|
o.world = mul(input.pos, sk_inst[id].world).xyz;
|
|
o.pos = mul(float4(o.world, 1), sk_viewproj[o.view_id]);
|
|
o.norm = normalize(mul(input.norm, (float3x3)sk_inst[id].world));
|
|
|
|
o.uv = input.uv;
|
|
o.color = input.col;
|
|
float lighting = dot(o.norm, normalize(float3(-0.3, 0.6, 0.1)));
|
|
lighting = (clamp(lighting, 0, 1) * 0.8) + 0.2;
|
|
o.color.rgb = o.color.rgb * lighting; // * sk_inst[id].color;
|
|
return o;
|
|
}
|
|
|
|
float3 cross(float3 a, float3 b) {
|
|
return float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
float dot(float3 a, float3 b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
// float tri_raycast(float3 origin, float3 dir) {
|
|
// float final = -1;
|
|
// float3 v0 = tri[0].xyz;
|
|
// float3 v1 = tri[1].xyz;
|
|
// float3 v2 = tri[2].xyz;
|
|
// float3 e1 = v1 - v0;
|
|
// float3 e2 = v2 - v0;
|
|
// float3 h = cross(dir, e2);
|
|
// float a = dot(e1, h);
|
|
// if (a > -0.00001 && a < 0.00001) {} else{
|
|
// float f = 1 / a;
|
|
// float3 s = origin - v0;
|
|
// float u = f * dot(s, h);
|
|
// if (u < 0.0 || u > 1.0) {} else {
|
|
// float3 q = cross(s, e1);
|
|
// float v = f * dot(dir, q);
|
|
// if (v < 0.0 || u + v > 1.0) {} else {
|
|
// float t = f * dot(e2, q);
|
|
// if (t > 0.00001) { final = 1.0;} // t
|
|
// }
|
|
// }
|
|
// }
|
|
// return final;
|
|
// }
|
|
|
|
float sdSphere(float3 p, float s) {
|
|
return length(p) - s;
|
|
}
|
|
|
|
float sdPlane(float3 p, float3 n, float h)
|
|
{
|
|
// n must be normalized
|
|
return dot(p,n) + h;
|
|
}
|
|
|
|
float sdBox(float3 p, float3 b)
|
|
{
|
|
float3 q = abs(p) - b;
|
|
return length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0);
|
|
}
|
|
|
|
float sdOctahedron(float3 p, float s)
|
|
{
|
|
p = abs(p);
|
|
return (p.x + p.y + p.z - s) * 0.57735027;
|
|
}
|
|
|
|
float map(float3 pos) {
|
|
float sphere = sdSphere(pos + float3(0, 0.5, 0), 0.1);
|
|
// return sdLink(pos, 0.1, 0.1, 0.1);
|
|
float octo = sdOctahedron(pos, 0.1);
|
|
// return lerp(sphere, octo, windStrength);
|
|
|
|
float plane = sdPlane(pos, float3(0, 1, 0), 0);
|
|
|
|
float phere = lerp(plane, sphere, windStrength);
|
|
return min(phere, octo);
|
|
}
|
|
|
|
float3 calcNormal(float3 pos)
|
|
{
|
|
float2 e = float2(1.0, -1.0) * 0.5773;
|
|
float eps = 0.0005;
|
|
return normalize(
|
|
e.xyy * map(pos + e.xyy * eps) +
|
|
e.yyx * map(pos + e.yyx * eps) +
|
|
e.yxy * map(pos + e.yxy * eps) +
|
|
e.xxx * map(pos + e.xxx * eps)
|
|
);
|
|
}
|
|
|
|
float calcAO(float3 pos, float3 nor)
|
|
{
|
|
float occ = 0.0;
|
|
float sca = 1.0;
|
|
for (int i = 0; i < 5; i++) {
|
|
float h = 0.01 + 0.12 * float(i)/4.0;
|
|
float d = map(pos + h * nor).x;
|
|
occ += (h - d) * sca;
|
|
sca *= 0.95;
|
|
if (occ > 0.35) break;
|
|
}
|
|
return clamp(1.0 - 3.0 * occ, 0.0, 1.0) * (0.5 + 0.5 * nor.y);
|
|
}
|
|
|
|
|
|
// float RayMarch(vec3 ro, vec3 rd) {
|
|
// float dO=0.;
|
|
|
|
// for(int i=0; i<MAX_STEPS; i++) {
|
|
// vec3 p = ro + rd*dO;
|
|
// float dS = GetDist(p);
|
|
// dO += dS;
|
|
// if(dO>MAX_DIST || dS<SURF_DIST) break;
|
|
// }
|
|
|
|
// return dO;
|
|
// }
|
|
|
|
float4 ps(psIn input) : SV_TARGET {
|
|
float3 ro = input.world; // ray origin
|
|
if (!(sdBox(input.campos, _dimensions / 2) > 0.0)) {
|
|
ro = input.campos;
|
|
// always cull front
|
|
// then replace the input.world with a raymarched box position
|
|
// brings hands into the space
|
|
}
|
|
float3 rd = normalize(input.world - input.campos); // ray direction
|
|
// input.color = float4(float3(1,1,1) * max(tri_raycast(input.world, ray), 0.0), 1);
|
|
|
|
// raymarch
|
|
float tmax = 3.0;
|
|
float t = 0.0;
|
|
for (int i = 0; i < 256; i++) {
|
|
float3 pos = ro + t * rd;
|
|
float h = map(pos);
|
|
if (h < 0.0001 || t > tmax) break;
|
|
t += h;
|
|
}
|
|
|
|
// shading/lighting
|
|
float3 col = float3(0.0, 0.0, 0.0);
|
|
if (t < tmax)
|
|
{
|
|
float3 pos = ro + t * rd;
|
|
float3 nor = calcNormal(pos);
|
|
float dif = clamp(dot(nor, float3(0.7, 0.6, 0.4)), 0.0, 1.0);
|
|
float amb = 0.5 + 0.5 * dot(nor, float3(0.0, 0.8, 0.6));
|
|
float ao = calcAO(pos, nor);
|
|
dif *= ao;
|
|
col = float3(0.2, 0.3, 0.4) * amb + float3(0.8, 0.7, 0.5) * dif;
|
|
}
|
|
|
|
// input.color = float4(float3(1,1,1) * max(t, 0.0), 1);
|
|
input.color = float4(col, 1);
|
|
|
|
// input.color = float4(float3(1,1,1) * sdSphere(input.uv, float2(0.2, 0.2), float2(0.8, 0.8)), 1);
|
|
// input.color.r = rr;
|
|
return input.color;
|
|
} |