namespace Oriels; public static class PullRequest { public static void BoundsDraw(Bounds b, float thickness, Color color) { Vec3 c = Vec3.One / 2; Vec3 ds = b.dimensions; for (int i = 0; i < 4; i++) { Quat q = Quat.FromAngles(i * 90, 0, 0); Lines.Add(q * (new Vec3(0, 0, 0) - c) * ds, q * (new Vec3(0, 1, 0) - c) * ds, color, color, thickness); Lines.Add(q * (new Vec3(0, 1, 0) - c) * ds, q * (new Vec3(1, 1, 0) - c) * ds, color, color, thickness); Lines.Add(q * (new Vec3(1, 1, 0) - c) * ds, q * (new Vec3(1, 0, 0) - c) * ds, color, color, thickness); // convert to linepoints } } // amplify quaternions (q * q * lerp(q.i, q, %)) public static Vec3 AngularDisplacement(Quat q) { float angle; Vec3 axis; ToAngleAxis(q, out angle, out axis); return axis * angle; // * (float)(Math.PI / 180); // radians -> degrees // / Time.Elapsedf; // delta -> velocity } public static void ToAngleAxis(Quat q, out float angle, out Vec3 axis) { q = q.Normalized; angle = 2 * (float)Math.Acos(q.w); float s = (float)Math.Sqrt(1 - q.w * q.w); axis = Vec3.Right; // avoid divide by zero // + if s is close to zero then direction of axis not important if (s > 0.001) { axis.x = q.x / s; axis.y = q.y / s; axis.z = q.z / s; } } static Random r = new Random(); public static int RandomRange(int min, int max) { return r.Next(min, max); } public static Vec3 Direction(Vec3 to, Vec3 from) { return (to - from).Normalized; } // swizzle public static Vec3 JustX(this Vec3 v) { return new Vec3(v.x, 0, 0); } public static Vec3 JustY(this Vec3 v) { return new Vec3(0, v.y, 0); } public static Vec3 JustZ(this Vec3 v) { return new Vec3(0, 0, v.z); } public static Vec3 Abs(this Vec3 v) { return new Vec3( MathF.Abs(v.x), MathF.Abs(v.y), MathF.Abs(v.z) ); } static Mesh meshCube = Default.MeshCube; static Material matCube = Default.Material; public static void BlockOut(Matrix m, Color color, Material mat = null) { if (mat == null) { mat = matCube; mat.FaceCull = Cull.None; } meshCube.Draw(mat, m, color); } public static Mesh GetMesh(this Model model, string name) { for (int i = 0; i < model.Nodes.Count; i++) { if (model.Nodes[i].Name == name) { return model.Nodes[i].Mesh; } } Console.WriteLine("Mesh not found: " + name); return Mesh.Quad; } public static void SetMat(this Material mat, int offset, Cull cull, bool depthWrite) { mat.QueueOffset = offset; mat.FaceCull = cull; mat.DepthWrite = depthWrite; } public static Vec3 RandomInCube(Vec3 center, float size) { Random r = new Random(); return center + new Vec3( (r.NextSingle() - 0.5f) * size, (r.NextSingle() - 0.5f) * size, (r.NextSingle() - 0.5f) * size ); } public static float Lerp(float a, float b, float t) { return a + (b - a) * t; } public static Vec3 Slerp(Vec3 a, Vec3 b, float t) { // spherical linear interpolation float dot = Vec3.Dot(a, b); if (dot > 0.9995f) { return Vec3.Lerp(a, b, t); } float theta = (float)Math.Acos(dot); float sinTheta = (float)Math.Sin(theta); return Vec3.Lerp(a * (float)Math.Sin(theta - theta * t) / sinTheta, b * (float)Math.Sin(theta * t) / sinTheta, t); } [Serializable] public class Noise { const uint CAP = 4294967295; const uint BIT_NOISE1 = 0xB5297A4D; const uint BIT_NOISE2 = 0x68E31DA4; const uint BIT_NOISE3 = 0x1B56C4E9; public uint seed; public Noise(uint seed) { this.seed = seed; } int position; public float uvalue { get { float v = RNG(position, seed) / (float)CAP; position++; return v; } } public float value { // not ideal *loss of precision* get { return uvalue * 2 - 1; } } public float D1(int pos) { return RNG(pos, seed) / (float)CAP; } public float D2(int x, int y) { // large prime number with non-boring bits const int PRIME = 198491317; return RNG(x + (PRIME * y), seed) / (float)CAP; } public float D3(int x, int y, int z) { // large prime number with non-boring bits const int PRIME1 = 198491317; const int PRIME2 = 6542989; return RNG(x + (PRIME1 * y) + (PRIME2 * z), seed) / (float)CAP; } public uint RNG(int pos, uint seed) { uint mangled = (uint)pos; mangled *= BIT_NOISE1; mangled += seed; mangled ^= mangled >> 8; mangled += BIT_NOISE2; mangled ^= mangled << 8; mangled *= BIT_NOISE3; mangled ^= mangled >> 8; return mangled; } } public static float Clamp01(float v) { return MathF.Max(0, MathF.Min(1, v)); } public static float Clamp(float v, float min, float max) { return MathF.Max(min, MathF.Min(max, v)); } [Serializable] public class PID { public float p, i; float integral = 0f; float value = 0f; // float scalar = 1f; public PID(float p = 1, float i = 0.1f) { this.p = p; this.i = i; } public float Update(float target) { float error = value - target; integral += error; float delta = ((p * error) + (i * integral)); return value -= delta * Time.Elapsedf; } } [Serializable] public class Lerper { public float t = 0; public float spring = 1; public float dampen = 1; float vel; public void Step(float to = 1, bool bounce = false) { float dir = to - t; vel += dir * spring * Time.Elapsedf; if (Math.Sign(vel) != Math.Sign(dir)) { vel *= 1 - (dampen * Time.Elapsedf); } else { vel *= 1 - (dampen * 0.33f * Time.Elapsedf); } float newt = t + vel * Time.Elapsedf; if (bounce && (newt < 0 || newt > 1)) { vel *= -0.5f; newt = Math.Clamp(newt, 0, 1); } t = newt; } public void Reset() { t = vel = 0; } } }